Abstract
Color and pitch perception are largely understandable from characteristics of physical stimuli: the wavelengths of light and sound waves, respectively. By contrast, understanding olfactory percepts from odorous stimuli (volatile molecules) is much more challenging. No intuitive set of molecular features is up to the task. Here in Chemical Senses, the Ray lab reports using a predictive modeling framework-first breaking molecular structure into thousands of features and then using this to train a predictive statistical model on a wide range of perceptual descriptors-to create a tool for predicting the odor character of hundreds of thousands of available but previously uncharacterized molecules (Kowalewski et al. 2021). This will allow future investigators to representatively sample the space of odorous molecules as well as identify previously unknown odorants with a target odor character. Here, I put this work into the context of other modeling efforts and highlight the urgent need for large new datasets and transparent benchmarks for the field to make and evaluate modeling breakthroughs, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.