Abstract
Surface ozone is an important air pollutant detrimental to human health and vegetation productivity, particularly in China. However, high resolution surface ozone concentration data is still lacking, largely hindering accurate assessment of associated environmental impacts. Here, we collected hourly ground ozone observations (over 6 million records), remote sensing products, meteorological data, and social-economic information, and applied recurrent neural networks to map hourly surface ozone data (HrSOD) at a 0.1° × 0.1° resolution across China during 2015–2020. The coefficient of determination (R2) values in sample-based, site-based, and by-year cross-validations were 0.72, 0.65 and 0.71, respectively, with the root mean square error (RMSE) values being 11.71 ppb (mean = 30.89 ppb), 12.81 ppb (mean = 30.96 ppb) and 11.14 ppb (mean = 31.26 ppb). Moreover, it exhibits high spatiotemporal consistency with ground-level observations at different time scales (diurnal, seasonal, annual), and at various spatial levels (individual sites and regional scales). Meanwhile, the HrSOD provides critical information for fine-resolution assessment of surface ozone impacts on environmental and human benefits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.