Abstract

The efficiency of prestack Kirchhoff depth migration is much improved by using ray parameter information measured from prestack common‐source and common‐receiver gathers. Ray tracing is performed only back along the emitted and emergent wave directions, and so is much reduced. The position of the intersection of the source and receiver rays is adjusted to satisfy the image time condition. The imaged amplitudes are spread along the local reflector surface only within the first Fresnel zone. There is no need to build traveltime tables before migration because the traveltime calculation is embedded into the migration. To further reduce the computation time, the input data are decimated by applying an amplitude threshold before the estimation of ray parameters, and only peak and trough points on each trace are searched for ray parameters.Numerical results show that the proposed implementation is typically 50–80 times faster than traditional Kirchhoff migration for synthetic 2D prestack data. The migration speed improvement is obtained at the expense of some reduction in migration quality; the optimal compromise is implemented by the choice of migration parameters. The main uses of the algorithm will be to get a fast first look at the main structural features and for iterative migration velocity analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.