Abstract

Low-rank matrix/tensor decompositions are promising methods for reducing the inference time, computation, and memory consumption of deep neural networks (DNNs). This group of methods decomposes the pre-trained neural network weights through low-rank matrix/tensor decomposition and replaces the original layers with lightweight factorized layers. A main drawback of the technique is that it demands a great amount of time and effort to select the best ranks of tensor decomposition for each layer in a DNN. This paper proposes a Proxy-based Automatic tensor Rank Selection method (PARS) that utilizes a Bayesian optimization approach to find the best combination of ranks for neural network (NN) compression. We observe that the decomposition of weight tensors adversely influences the feature distribution inside the neural network and impairs the predictability of the post-compression DNN performance. Based on this finding, a novel proxy metric is proposed to deal with the abovementioned issue and to increase the quality of the rank search procedure. Experimental results show that PARS improves the results of existing decomposition methods on several representative NNs, including ResNet-18, ResNet-56, VGG-16, and AlexNet. We obtain a 3× FLOP reduction with almost no loss of accuracy for ILSVRC-2012ResNet-18 and a 5.5× FLOP reduction with an accuracy improvement for ILSVRC-2012 VGG-16.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call