Abstract

We present a numerical solution of the parquet approximation, a conserving diagrammatic approach which is self-consistent at both the single-particle and the two-particle levels. The fully irreducible vertex is approximated by the bare interaction thus producing the simplest approximation that one can perform with the set of equations involved in the formalism. The method is applied to the Hubbard model on a half-filled 4x4 cluster. Results are compared to those obtained from determinant quantum Monte Carlo (DQMC), FLuctuation EXchange (FLEX), and self-consistent second-order approximation methods. This comparison shows a satisfactory agreement with DQMC and a significant improvement over the FLEX or the self-consistent second-order approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.