Abstract

We study a simple model system for the conjugated $\pi$-bonds in benzene, the Pariser-Parr-Pople (PPP) model, within the parquet approximation (PA), exemplifying the prospects of the PA for molecules. Advantages of the PA are the polynomial scaling with the number of orbitals, and the natural calculation of one- and two-particle spectral functions as well as of response and correlation functions. We find large differences in the electronic correlations in the PPP model compared to a Hubbard model with only local interactions. The quasiparticle renormalization (or mass enhancement) is much weaker in the PPP than in the Hubbard model, but the static part of the self-energy enhances the band gap of the former. Furthermore, the vertex corrections to the optical conductivity are much more important in the PPP model. Because non-local interactions strongly alter the self-energy, we conclude that the PA is more suitable for calculating conjugated $\pi$-bonds in molecules than single site dynamical mean-field theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.