Abstract

Tyrosine kinase inhibitor (TKI) resistance is the main type of drug resistance in lung cancer patients with epidermal growth factor receptor (EGFR) mutations, but its underlying mechanism remains unclear. The purpose of this work was to investigate the mechanism by which PARP1 regulates EGFR-TKI resistance to identify potential targets for combating drug resistance. The GEO databases, TCGA databases, western blot and qPCR studies were used to investigate the expression of PARP1 in lung cancer cells and tissues and its correlation with the prognosis of lung cancer. The expression of PARP1 in lung cancer TKI resistant cell PC9-ER and TKI sensitive cell PC9 was analyzed by qPCR and western blot. After knocking down of PARP1, CCK-8 assays, colony formation, flow cytometry were used to investigate its impact on erlotinib sensitivity, cell survival, cell cycle, and apoptosis. RNA-seq was used to investigate the mechanism by which PARP1 participates in EGFR-TKI resistance, and the results were validated in vitro and in vivo studies. PARP1 was highly expressed in both lung cancer tissues and cells. Subsequently, increased PARP1 expression was observed in PC9-ER compared with its parental cell line. Knockdown of PARP1 increased erlotinib sensitivity, promoted cell apoptosis, and suppressed cell growth. RNA-seq and previous studies have shown that the PI3K/AKT/mTOR/P70S6K pathway is involved in PARP1-mediated TKI resistance, and these results were confirmed by Western blot in vitro and in vivo. PARP1 may serve as a potential therapeutic target for reversing EGFR-TKI resistance in NSCLC via the PI3K/AKT/mTOR/P70S6K pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call