Abstract

The PARP1 protein plays a key role in DNA damage repair and ADP-ribosylation to regulate gene expression. Strategies to target PARP1 have rapidly been developed for cancer treatment. However, the role of the innate immune response in targeted anti-PARP1 therapy remains poorly understood. In this work, we aimed to elucidate the regulatory mechanism underlying the immunogenicity of PARP1 and explore efficient therapeutic strategies to enhance the antitumor effect of PARP inhibitors. The relationships between PARP1 expression and immunosuppressive factors were examined by qRTPCR and immunoblot analysis. DNA pull-down, chromatin immunoprecipitation-quantitative PCR (ChIPqPCR) and luciferase reporter assays were employed to reveal the mechanism by which the expression of the immune checkpoint regulator CD24 is regulated by PARP1. Phagocytosis assays and pancreatic cancer animal models were applied to evaluate the therapeutic effect of simultaneous disruption of PARP1 and the antiphagocytic factor CD24. Upregulation of the innate immunosuppressive factor CD24 was observed in pancreatic cancer during PARP1 inhibition. The activating effect of targeting CD24 on macrophage phagocytosis was verified. Then, we showed that PARP1 attenuated the transcription of CD24 by ADP-ribosylating the transcription factor DDX5 in pancreatic cancer. Combined blockade of PARP1 and the antiphagocytic factor CD24 elicited a synergetic antitumor effect in pancreatic cancer. Our research provided evidence that combination treatment with PARP inhibitors and CD24 blocking monoclonal antibodies (mAbs) could be an effective strategy to improve the clinical therapeutic response in pancreatic cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call