Abstract
BackgroundMemory consolidation, reconsolidation, and extinction have been shown to require new gene expression. Poly ADP-ribosylation mediated by poly (ADP-ribose) polymerase-1 (PARP-1) is known to regulate transcription through histone modification. Recent studies have suggested that PARP-1 positively regulates the formation of long-term memory (LTM); however, the roles of PARP-1 in memory processes, especially processes after retrieval, remain unknown.ResultsHere, we show critical roles for PARP-1 in the consolidation, reconsolidation, and extinction of contextual fear memory in mice. We examined the effects of pharmacological inhibition of PARP-1 activity in the hippocampus or medial prefrontal cortex (mPFC) on these memory processes. Similarly with previous findings, a micro-infusion of the PARP-1 inhibitor 3-aminobenzamide or PJ34 into the dorsal hippocampus, but not mPFC, impaired LTM formation without affecting short-term memory (STM). Importantly, this pharmacological blockade of PARP-1 in the dorsal hippocampus, but not mPFC, also disrupted post-reactivation LTM without affecting post-reactivation STM. Conversely, micro-infusion of the PARP-1 inhibitors into the mPFC, but not dorsal hippocampus, blocked long-term extinction. Additionally, systemic administration of the PARP-1 inhibitor Tiq-A blocked c-fos induction in the hippocampus, which is observed when memory is consolidated or reconsolidated, and also blocked c-fos induction in the mPFC, which is observed when memory is extinguished.ConclusionsOur observations showed that PARP-1 activation is required for the consolidation, reconsolidation, and extinction of contextual fear memory and suggested that PARP-1 contributes to the new gene expression necessary for these memory processes.
Highlights
IntroductionReconsolidation, and extinction have been shown to require new gene expression
Memory consolidation, reconsolidation, and extinction have been shown to require new gene expression
poly (ADP-ribose) polymerase-1 (PARP-1) activity in the hippocampus is required for the consolidation of contextual fear memory Abundant studies have shown that the consolidation of contextual fear memory depends on the hippocampus [36,37,38]
Summary
Reconsolidation, and extinction have been shown to require new gene expression. ADP-ribosylation of proteins is one of the reversible post-translational modifications in eukaryotes and, importantly, is involved in biological processes in the nucleus such as transcriptional regulation, DNA repair, and control of centrosomal division [1,2,3]. This poly ADP-ribosylation is mainly catalyzed by the nuclear protein poly (ADP-ribose) polymerase-1 (PARP-1) [4,5,6].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.