Abstract

The development of diabetic complications is associated with increased oxidative stress which may damage DNA leading to the activation of nuclear enzyme poly (ADP-ribose) polymerase (PARP). PARP overactivation may further exacerbate the oxidative state of the cell through its consumption of nicotinamide adenine dinucleotide. In diabetic retinopathy and nephropathy, early characteristic features include increased production of vasoactive factors such as endothelin 1 (ET-1) and increased synthesis of extracellular matrix (ECM) proteins such as fibronectin (FN) and its splice variant extra domain B containing (EDB(+)) FN. We investigated the role of PARP in the development of diabetic retinopathy and nephropathy. Two models of diabetic complications were used. PARP-1 knockout mice and their respective wild type controls were fed a 30% galactose diet for 2 months. The rats were given injections of PARP inhibitor 3-aminobenzamide (30 mg/kg/day). Analysis of the retinal and kidney tissues showed hyperhexosemia-induced oxidative stress and increased expression of ET-1, FN and EDB(+) FN in association with increased transcriptional co-activator p300 along with p300-dependent transcription factors, myocyte enhancing factors 2A and 2C. Furthermore, we showed increased PARP expression in the kidneys and retina of the diabetic rats. PARP blockade in both animal models prevented these hyperhexosemia-induced effects. These findings suggests that hyperhexosemia and diabetes causes upregulation of ET-1, FN and EDB(+) FN at the transcriptional level in the retina and kidney via a signaling pathway mediated by PARP and an epigenetic mechanism involving p300 and MEF2 transcription factors. Understanding these mechanisms is important in identifying novel treatment targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.