Abstract

Poly(ADP-ribose) polymerase-1 (PARP-1) is widely involved in cell death responses. Depending on the degree of injury and on cell type, PARP activation may lead to autophagy, apoptosis or necrosis. In HEK293 cells exposed to the alkylating agent N-methyl-N’-nitro-N’-nitrosoguanine (MNNG), we show that PARP-1 activation triggers a necrotic cell death response. The massive poly(ADP-ribose) (PAR) synthesis following PARP-1 activation leads to the modulation of mTORC1 pathway. Shortly after MNNG exposure, NAD+ and ATP levels decrease, while AMP levels drastically increase. We characterized at the molecular level the consequences of these altered nucleotide levels. First, AMP-activated protein kinase (AMPK) is activated and the mTORC1 pathway is inhibited by the phosphorylation of Raptor, in an attempt to preserve cellular energy. Phosphorylation of the mTORC1 target S6 is decreased as well as the phosphorylation of the mTORC2 component Rictor on Thr1135. Finally, Akt phosphorylation on Ser473 is lost and then, cell death by necrosis occurs. Inhibition of PARP-1 with the potent PARP inhibitor AG14361 prevents all of these events. Moreover, the antioxidant N-acetyl-L-cysteine (NAC) can also abrogate all the signaling events caused by MNNG exposure suggesting that reactive oxygen species (ROS) production is involved in PARP-1 activation and modulation of mTOR signaling. In this study, we show that PARP-1 activation and PAR synthesis affect the energetic status of cells, inhibit the mTORC1 signaling pathway and possibly modulate the mTORC2 complex affecting cell fate. These results provide new evidence that cell death by necrosis is orchestrated by the balance between several signaling pathways, and that PARP-1 and PAR take part in these events.

Highlights

  • Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in various cellular processes including DNA repair, transcription, replication, genomic stability, and cell death [1,2]

  • Since PAR is synthesized from NAD+, PARP-1 overactivation leads to a decrease in NAD+ levels

  • We have shown that massive PAR synthesis following MNNG exposure in HEK293 cells affects mammalian target of rapamycin (mTOR) signaling, modulating survival pathways, but eventually cause cell death by necrosis

Read more

Summary

Introduction

PARP-1 is a nuclear enzyme involved in various cellular processes including DNA repair, transcription, replication, genomic stability, and cell death [1,2]. DNA damage resulting from exposure to alkylating agents leads to PARP-1 activation and PAR synthesis [3]. Most free or protein-associated PAR is rapidly degraded by poly(ADPribose) glycohydrolase (PARG) to generate ADP-ribose. It has been recently shown that ADP-ribose is further metabolized very rapidly by NUDIX (nucleoside diphosphate linked to another moiety X) hydrolases NUDT5 and NUDT9 to generate AMP [4]. AMPK is a sensor of cellular energy that is phosphorylated and activated by the LKB1 tumor suppressor protein kinase under conditions of energy stress that causes high AMP/ATP ratios. AMPK acts to correct the energy imbalance by shutting off ATP consuming processes [5], and one of the major signaling pathways regulated by AMPK is the mammalian target of rapamycin (mTOR) pathway [6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.