Abstract

Idarubicin (IDA), an anthracycline antineoplastic drug, is commonly used in the treatment of acute myeloid leukemia (AML) with reasonable response rates and clinical benefits. However, some patients still relapse, or do not respond, and suffer high fatality rates. Recent studies have shown that overexpression of PARP-1 may represent an important risk factor in AML patients. The aim of the present study was to determine the underlying molecular mechanisms by which the PARP-1 inhibitor Olaparib enhances the chemosensitivity of the leukemia cell line K562 and THP1 to IDA. Our data demonstrated that PARP-1 is upregulated in AML patients as well as in K562 and THP1 cells, and that the suppression of PARP-1 activity by Olaparib enhances the inhibitory effect of IDA. A mechanistic study revealed that Olaparib decreases the expressions of p-ATM, p-IκBα, XIAP and p65, and upregulates Bax, cleaved-Caspase-3 and γ-H2AX. Olaparib can enhance the induction of DNA damage by IDA, probably mediated by the inhibition of the ATM-related DNA damage response. Moreover, we also found that the nuclear translocation of p65 and the nuclear export of NEMO are inhibited when IDA and Olaparib are combined. Our results suggest that Olaparib attenuates the activity of the NF-κB pathway and decreases the DNA damage response induced by IDA. Therefore, we conclude that Olaparib is a potentially valuable chemosensitizer for leukemia patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call