Abstract

Mild cognitive impairment (MCI) is a clinically detectable initial stage of cognitive deterioration with a high conversion rate to dementia. There is increasing evidence that some of the cerebral alterations present in Alzheimer type dementia can be found in peripheral tissues. We have previously shown that lymphocytes from Alzheimer’s disease (AD) patients have increased susceptibility to hydrogen peroxide (H2O2)-induced death that depends on dementia severity. We here investigated whether lymphocytes from MCI patients show increased vulnerability to death, and explored the involvement of Poly [ADP-ribose] polymerase (PARP-1) and p53 in the regulation of this process. Lymphocytes from 16 MCI and 10 AD patients, and 15 healthy controls (HCs) were submitted to increasing concentrations of H2O2 for 20 h. Cell death was determined by flow cytometry, in the presence or absence of PARP-1 inhibitors (3-aminobenzamide (3-ABA) or Nicotinamide (NAM)), or the p53 inhibitor (nutlin-3) or stabilizer (pifithrin-α). PARP-1 and p53 mRNA levels were determined by quantitative PCR (qPCR). Lymphocytes from MCI patients showed increased susceptibility to death, attaining intermediate values between AD and controls. PARP inhibitors -3-ABA and NAM- markedly protected from H2O2-induced death, making the difference between MCI and controls disappear, but not the difference between AD and controls. PARP-1 mRNA expression was increased in MCI lymphocytes. Modulation of p53 with Nutlin-3 or pifithrin-α did not modify the H2O2-induced death of lymphocytes from MCI or AD patients, but augmented the death in control lymphocytes attaining levels similar to MCI and AD. Accordingly, p53 mRNA expression was increased in AD and MCI lymphocytes compared to controls. In all, these results show that increased oxidative death is present in lymphocytes at the MCI stage. PARP-1 has a preponderant role, with complete death protection achieved with PARP inhibition in MCI lymphocytes, but not in AD, suggesting that PARP-1 might have a protective role. In addition, deregulations of the p53 pathway seem to contribute to the H2O2-induced death in MCI and AD lymphocytes, which show increased p53 expression. The results showing a prominent protective role of PARP inhibitors opens the door to study the use of these agents to prevent oxidative death in MCI patients.

Highlights

  • Alzheimer’s disease (AD) is the most frequent cause of dementia, affecting an estimated 30 million people worldwide (Prince et al, 2016)

  • The H2O2 dose-response curves of lymphocyte viability were shifted to the left in Mild cognitive impairment (MCI) lymphocytes compared to healthy controls (HCs), attaining intermediate values between controls and AD patients (Figure 1A)

  • When examining the type of death induced by H2O2, MCI lymphocytes showed increased apoptosis compared with control lymphocytes, without changes in necrosis (Figures 1C,D)

Read more

Summary

Introduction

Alzheimer’s disease (AD) is the most frequent cause of dementia, affecting an estimated 30 million people worldwide (Prince et al, 2016). Aging is the main risk factor to develop the disease: the annual incidence increases from 1% to 2% at the ages of 65 and doubles every 5 years thereafter (Querfurth and LaFerla, 2010). Mild cognitive impairment (MCI)—a cognitive decline without functional deficit—especially the amnestic type, precedes the earliest manifestations of AD, defining a clinically detectable initial stage of the disease (Petersen, 2011). The possibility that interventions during the stage of MCI may change the clinical course of the disease has led to a significant increase in the study of this condition. There is still a necessity of a simple and reliable biomarker to diagnose the disease (Olsson et al, 2016)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call