Abstract

The use of next-generation sequencing technology has enabled phylogenetic studies with hundreds of thousands of taxa. Such large-scale phylogenies have become a critical component in genomic epidemiology in pathogens such as SARS-CoV-2 and influenza A virus. However, detailed phenotypic characterization of pathogens or generating a computationally tractable dataset for detailed phylogenetic analyses requires objective subsampling of taxa. To address this need, we propose parnas, an objective and flexible algorithm to sample and select taxa that best represent observed diversity by solving a generalized k-medoids problem on a phylogenetic tree. parnas solves this problem efficiently and exactly by novel optimizations and adapting algorithms from operations research. For more nuanced selections, taxa can be weighted with metadata or genetic sequence parameters, and the pool of potential representatives can be user-constrained. Motivated by influenza A virus genomic surveillance and vaccine design, parnas can be applied to identify representative taxa that optimally cover the diversity in a phylogeny within a specified distance radius. We demonstrated that parnas is more efficient and flexible than existing approaches. To demonstrate its utility, we applied parnas to 1) quantify SARS-CoV-2 genetic diversity over time, 2) select representative influenza A virus in swine genes derived from over 5 years of genomic surveillance data, and 3) identify gaps in H3N2 human influenza A virus vaccine coverage. We suggest that our method, through the objective selection of representatives in a phylogeny, provides criteria for quantifying genetic diversity that has application in the the rational design of multivalent vaccines and genomic epidemiology. PARNAS is available at https://github.com/flu-crew/parnas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.