Abstract

BackgroundImpairments of postural stability occur with increasing age and in neurodegenerative diseases like the Parkinson's disease (PD). While changes in balance have been described in many studies under steady-state conditions, less is known about the dynamic changes in balance following sudden transition to different sensory inputs. Research questionThe aim was to clarify different effects of age and Parkinson's disease on dynamic postural responses immediately after lower leg muscle stimulation offset. Sudden removing of active sensory input represents a transient period in balance control. MethodsPostural responses of 13 young, 13 healthy elderly and 13 PD patients to proprioceptive bilateral vibration of soleus muscles during stance were assessed by a force platform and two accelerometers attached on the upper and the lower trunk. The experimental protocol consisted of 2 conditions of soleus muscle vibration with 1) eyes open and 2) eyes closed randomly repeated four times. ResultsDuring vibration period before stimulus offset, postural responses were similar in elderly and PD patients. Contrary, immediately after vibration offset significantly larger backward amplitude of centre of foot pressure (CoP) displacement and trunk tilts were observed in PD patients compared to healthy peers. In returning to vertical position, peak-to-peak amplitudes, maximal velocity of CoP and trunk tilts significantly increased in PD patients. Without vision, their postural responses were more enhanced. The differences between young and elderly were found in most parameters in transient period after vibration offset and also during vibration. SignificanceThe PD patients showed more unstable transient postural responses to selective sensory stimulation switch off, which may reflect impairment of sensory reweighting in balance control. Understanding how early stages PD patients differ in balance control from neurologically intact peers may help researchers and clinicians to refine their intervention and fall prevention programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.