Abstract
BackgroundSeveral articles suggest that DNA methylation levels in blood relate to Parkinson’s disease (PD) but there is a need for a large-scale study that involves suitable population based controls. The purposes of the study were: (1) to study whether PD status is associated with DNA methylation levels in blood/saliva; (2) to study whether observed associations relate to blood cell types; and (3) to characterize genome-wide significant markers (“CpGs”) and clusters of CpGs (co-methylation modules) in terms of biological pathways.MethodsIn a population-based case control study of PD, we studied blood samples from 335 PD cases and 237 controls and saliva samples from another 128 cases and 131 controls. DNA methylation data were generated from over 486,000 CpGs using the Illumina Infinium array. We identified modules of CpGs (clusters) using weighted correlation network analysis (WGCNA).ResultsOur cross-sectional analysis of blood identified 82 genome-wide significant CpGs (including cg02489202 in LARS2 p = 8.3 × 10–11 and cg04772575 in ABCB9 p = 4.3 × 10–10). Three out of six PD related co-methylation modules in blood were significantly enriched with immune system related genes. Our analysis of saliva identified five significant CpGs. PD-related CpGs are located near genes that relate to mitochondrial function, neuronal projection, cytoskeleton organization, systemic immune response, and iron handling.ConclusionsThis study demonstrates that: (1) PD status has a profound association with DNA methylation levels in blood and saliva; and (2) the most significant PD-related changes reflect changes in blood cell composition. Overall, this study highlights the role of the immune system in PD etiology but future research will need to address the causal structure of these relationships.
Highlights
Several articles suggest that DNA methylation levels in blood relate to Parkinson’s disease (PD) but there is a need for a large-scale study that involves suitable population based controls
We only adjusted for differences in age and sex because we hypothesized that PD-related changes in DNA methylation might reflect changes in blood cell composition and immune system functioning [5]
We adjusted DNA methylation levels for differences in blood cell composition in order to find cell-intrinsic changes associated with PD
Summary
Several articles suggest that DNA methylation levels in blood relate to Parkinson’s disease (PD) but there is a need for a large-scale study that involves suitable population based controls. 30 PD patients and 15 controls identified two loci, FANCC cg14115740 and TNKS2 cg11963436, as hypermethylated in patients [4] and was able to replicate this with bisulfite sequencing in a targeted analysis of 219 PD patients and 223 controls. While these results suggest that PD status might be associated with changes in DNA methylation levels in blood, there is a danger of false-positive findings due to small sample sizes. We have previously shown that PD cases differ significantly from
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.