Abstract

Accumulating evidence indicates that endoplasmic reticulum (ER) stress is a common feature of Parkinson’s disease (PD) and further suggests that several PD-related genes are responsible for ER dysfunction. However, the underlying mechanisms are largely unknown. Here, we defined the mechanism by which LRRK2-G2019S (LRRK2-GS), a pathogenic mutation in the PD-associated gene LRRK2, accelerates ER stress and cell death. Treatment of cells with α-synuclein increased the expression of ER stress proteins and subsequent cell death in LRRK2-GS astrocytes. Intriguingly, we found that LRRK2-GS localizes to the ER membrane, where it interacts with sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and suppress its activity by preventing displacement of phospholamban (PLN). LRRK2-GS–mediated SERCA malfunction leads to ER Ca2+ depletion, which induces the formation of mitochondria-ER contacts and subsequent Ca2+ overload in mitochondria, ultimately resulting in mitochondrial dysfunction. Collectively, our data suggest that, in astrocytes, LRRK2-GS impairs ER Ca2+ homeostasis, which determines cell survival, and as a result, could contribute to the development of PD.

Highlights

  • Parkinson’s disease (PD), the second-most common neurodegenerative disease, is characterized by selective loss of dopaminergic (DA) neurons of the substantia nigra pars compacta (SNpc), accumulation of intracellular inclusions containing α-synuclein, and subsequent progressive impairment of dopaminergic neurons—the clinical feature of PD [6, 58]

  • We found that both types of α-synuclein induced apoptotic PKR-like endoplasmic reticulum kinase (PERK)-CCAAT/enhancer-binding protein homologous protein (CHOP) signaling in leucine-rich repeat kinase 2 protein (LRRK2)-GS astrocytes, as evidenced by increases in mRNA and protein levels of the endoplasmic reticulum (ER) stress markers (Fig. 1 a-b)

  • Similar results were obtained following challenge with the ER-stress–inducing agent, tunicamycin (Additional file 2: Figure S1 c–f). These results show that ER-stress–mediated cell death is significantly increased in LRRK2-GS astrocytes after α-synuclein treatment

Read more

Summary

Introduction

Parkinson’s disease (PD), the second-most common neurodegenerative disease, is characterized by selective loss of dopaminergic (DA) neurons of the substantia nigra pars compacta (SNpc), accumulation of intracellular inclusions containing α-synuclein, and subsequent progressive impairment of dopaminergic neurons—the clinical feature of PD [6, 58]. It is mostly sporadic; less than 10% of PD cases are inherited [28]. Since ER resident chaperones are involved in protein folding require high Ca2+ concentrations for their activity, altered ER Ca2+ homeostasis can result in an imbalance between the capacity of the protein processing machinery and the amount of unfolded proteins

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call