Abstract
The severity evaluation of Parkinson's disease (PD) is of great significance for the treatment of PD. However, existing methods either have limitations based on prior knowledge or are invasive methods. To propose a more generalized severity evaluation model, this paper proposes an explainable 3D multi-head attention residual convolution network. First, we introduce the 3D attention-based convolution layer to extract video features. Second, features will be fed into LSTM and residual backbone networks, which can be used to capture the contextual information of the video. Finally, we design a feature compression module to condense the learned contextual features. We develop some interpretable experiments to better explain this black-box model so that it can be better generalized. Experiments show that our model can achieve state-of-the-art diagnosis performance. The proposed lightweight but effective model is expected to serve as a suitable end-to-end deep learning baseline in future research on PD video-based severity evaluation and has the potential for large-scale application in PD telemedicine. The source code is available at https://github.com/JackAILab/MARNet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.