Abstract

Accumulating evidences suggest that the related autophagy-lysosomal mechanism plays a critical role in many neurodegenerative disorders. In this study, we examined postmortem Parkinson's disease (PD) substantia nigra for evidence of cathepsin L by immunofluorescent staining, and found increased expression of cathepsin L in dopamine neurons of PD patients. We confirmed 6-OHDA induced nuclear translocation of cathepsin L in rat substantia nigral neurons as well. Furthermore, we observed autophagic vacuoles and lysosomes were accumulated in the 6-hydroxydopamine (6-OHDA) injured rat substantia nigra neurons with electron microscopy. Immunofluorescent staining showed that LC3 was enriched in dopamine neurons after 6-OHDA treatment. When pretreated with 3-methyladenine (3-MA), dopaminergic neurons were protected from cell death induced by 6-OHDA, associated with the suppression of LC3 and cathepsin L. Our results demonstrate that activation of autophagy and abnormal distribution of cathepsin L may be responsible for dopamine neuron death, involved in the pathogenic cascade event for the development of Parkinson's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.