Abstract

The classic Braak neuropathologic staging model in Parkinson disease (PD) suggests that brain lesions progress from the medulla oblongata to the cortex. An alternative model in which neurodegeneration first occurs in the cortex has also been proposed. These 2 models may correspond to different patient phenotypes. To test these 2 models and to investigate whether they were influenced by the presence of REM sleep behavior disorder (RBD), we used multimodal MRI and partial least squares path modeling (PLS-PM) assuming that patients with RBD followed distinct neurodegeneration pattern. Fifty-four patients with PD (34 with RBD) and 25 healthy volunteers were scanned with T1-weighted, diffusion tensor, and neuromelanin-sensitive imaging. Volume, signal, and mean, axial, and radial diffusivities were calculated in brainstem, basal forebrain, and cortical regions. PLS-PM, estimating a network of causal relationships between blocks of variables, was used to build and test an analytical model based on Braak staging. The overall quality of the model was assessed with goodness of fit coefficient (Gof). PLS-PM was run on patients with PD with RBD and without RBD separately. In PD with RBD, a brainstem-to-cortex model had significant Gof (0.71, p = 0.01), whereas a cortex-to-brainstem model did not. In contrast, in patients with PD without RBD, the brainstem-to-cortex model was not significant (Gof = 0.64, p = 0.27), and the cortex-to-brainstem model was highly significant (Gof = 0.72, p = 0.008). With the PLS-PM imaging-based model, the neurodegeneration pattern of patients with PD with RBD was consistent with the Braak brainstem-to-cortex model, whereas that of patients without RBD followed the cortex-to-brainstem model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.