Abstract

Place a car independently with probability $p$ at each site of a graph. Each initially vacant site is a parking spot that can fit one car. Cars simultaneously perform independent random walks. When a car encounters an available parking spot it parks there. Other cars can still drive over the site, but cannot park there. For a large class of transitive and unimodular graphs, we show that the root is almost surely visited infinitely many times when $p\geq1/2$, and only finitely many times otherwise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.