Abstract
With the rapid growth of population and vehicles, issues such as traffic congestion are becoming increasingly apparent. Parking guidance and information (PGI) systems are becoming more critical, with one of the most important tasks being the prediction of traffic flow in parking lots. Predicting parking traffic can effectively improve parking efficiency and alleviate traffic congestion, traffic accidents, and other problems. However, due to the complex characteristics of parking spatio-temporal data, high levels of noise, and the intricate influence of external factors, there are three challenges to predicting parking traffic in a city effectively: (1) how to better model the nonlinear, asymmetric, and complex spatial relationships among parking lots; (2) how to model the temporal autocorrelation of parking flow more accurately for each parking lot, whether periodic or aperiodic; and (3) how to model the correlation between external influences, such as holiday weekends, POIs (points of interest), and weather factors. In this context, this paper proposes a parking lot traffic prediction model based on the fusion of multifaceted spatio-temporal features (MFF-STGCN). The model consists of a feature embedding module, a spatio-temporal attention mechanism module, and a spatio-temporal convolution module. The feature embedding module embeds external features such as weekend holidays, geographic POIs, and weather features into the time series, the spatio-temporal attention mechanism module captures the dynamic spatio-temporal correlation of parking traffic, and the spatio-temporal convolution module captures the spatio-temporal features by using graph convolution and gated recursion units. Finally, the outputs of adjacent time series, daily series, and weekly series are weighted and fused to obtain the final prediction results, thus predicting the parking lot traffic flow more accurately and effectively. Results on real datasets demonstrate that the proposed model enhances prediction performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.