Abstract

Increased type 2 interferon (i.e., IFN-γ) signaling has been shown to be involved in airway inflammation in a subset of asthma patients who often show high levels of airway neutrophilic inflammation and poor response to corticosteroid treatment. How IFN-γ mediates airway inflammation in a mitochondrial dysfunction setting (e.g., Parkin up-regulation) remains poorly understood. The goal of this study was to determine the role of Parkin, an E3 ubiquitin ligase, in IFN-γ-mediated airway inflammation and the regulation of Parkin by IFN-γ. A mouse model of IFN-γ treatment in wild-type and Parkin knockout mice, and cultured human primary airway epithelial cells with or without Parkin gene deficiency were used. Parkin was found to be necessary for the production of neutrophil chemokines (i.e., LIX and IL-8) and airway neutrophilic inflammation following IFN-γ treatment. Mechanistically, Parkin was induced by IFN-γ treatment both in vivo and in vitro, which was associated with less expression of a Parkin transcriptional repressor Thap11. Overexpression of Thap11 inhibited Parkin expression in IFN-γ-stimulated airway epithelial cells. Our data suggest a novel mechanism by which IFN-γ induces airway neutrophilic inflammation through the Thap11/Parkin axis. Inhibition of Parkin expression or activity may provide a new therapeutic target for the treatment of excessive neutrophilic inflammation in an IFN-γ-high environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.