Abstract

The activation of innate immunity and associated interferon (IFN) signaling have been implicated in cancer, but the regulators are elusive and a link to tumor suppression undetermined. Here, we found that Parkin, an E3 ubiquitin ligase altered in Parkinson's Disease was epigenetically silenced in cancer and its re-expression by clinically approved demethylating therapy stimulated transcription of a potent IFN response in tumor cells. This pathway required Parkin E3 ubiquitin ligase activity, involved the subcellular trafficking and release of the alarmin High Mobility Group Box 1 (HMGB1) and was associated with inhibition of NFκB gene expression. In turn, Parkin-expressing cells released an IFN secretome that upregulated effector and cytotoxic CD8 T cell markers, lowered the expression of immune inhibitory receptors, TIM3 and LAG3, and stimulated high content of the self-renewal/stem cell factor, TCF1. Parkin-induced CD8 T cells selectively accumulated in the microenvironment and inhibited transgenic and syngeneic tumor growth, in vivo. Therefore, Parkin is an epigenetically regulated activator of innate immunity and dual mode tumor suppressor, inhibiting intrinsic tumor traits of metabolism and cell invasion, while simultaneously reinvigorating CD8 T cell functions in the microenvironment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.