Abstract
abstract Two earthquakes, M = 5.3 and 5.5, shook the Parkfield area in southern Monterey County, California, at 0409:56.5 and 0426:13.8 GMT, 28 June 1966. They were preceded by foreshocks on the same day at 0100 and 0115. A third shock, M = 5.0, occurred in the same area at 1953:26.2 on 29 June. The earthquakes were followed by a heavy sequence of aftershocks with epicenters along the San Andreas fault zone extending for about 15 miles southward beyond Cholame in San Luis Obispo County. A P-wave first-motion fault plane solution shows strike of vertical fault plane is N 33°W, coinciding with a surface zone of en echelon fault fractures in the pattern characteristic of right-lateral, strike-slip movement. The motion appears to have an upward component on the west side, at about 20° from pure strike slip. Extensive instrumentation within a few miles of the epicentral district gave unusually complete records from foreshock to aftershock sequence. A strong-motion instrument in the fault zone near Cholame recorded the unusually high horizontal acceleration of 0.5 g. The epicentral region of the earthquakes is on a known active segment of the San Andreas fault. Earthquakes in 1901, 1922, and 1934 in this region were also accompanied by surface faulting. On the published State geologic map, scale 1:250,000, the San Andreas fault zone shows a braided pattern of several branching en echelon major faults. Topographic forms, typical of the features of rift valleys, testify to the recency of fault movements. Small right-lateral surficial displacements had been recognized prior to the late June earthquakes in at least three places on the Parkfield-Cholame trace of the fault. Similar creep, or slippage, has continued since the earthquakes. Extensive nets of survey markers installed by 30 June across the active fault trace had recorded slippage as great as 0.1 inch per day by 12 July. The fault trace associated with the earthquakes is principally in alluvium of unknown depth in Cholame Valley, apparently a faulted graben within the San Andreas fault zone. Under a blanket of Tertiary and Quaternary sedimentary rocks in this part of the southern Coast Ranges, the great fault separates Jurassic-Cretaceous granitic and metamorphic rocks in the western block from Late Jurassic eugeosynclinal sedimentary and volcanic rocks of the Franciscan Formation in the eastern block. In spite of the large horizontal acceleration recorded near the fault, very little building damage occurred in this sparsely populated region. Small concrete and steel bridges in, and adjacent to the fault trace, did not have their structural strength impaired.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.