Abstract
ABSTRACT Reconnection between pairs of solar magnetic flux elements, one open and the other a closed loop, is theorized to be a crucial process for both maintaining the structure of the corona and producing the solar wind. This ‘interchange reconnection’ is expected to be particularly active at the open-closed boundaries of coronal holes (CHs). Previous analysis of solar wind data at 1 au indicated that peaks in the flux of suprathermal electrons at slow–fast stream interfaces may arise from magnetic connection to the CH boundary, rather than dynamic effects such as compression. Further, offsets between the peak and stream interface locations are suggested to be the result of interchange reconnection at the source. As a preliminary test of these suggestions, we analyse two solar wind streams observed during the first Parker Solar Probe (PSP) perihelion encounter, each associated with equatorial CH boundaries (one leading and one trailing with respect to rotation). Each stream features a peak in suprathermal electron flux, the locations and associated plasma properties of which are indicative of a solar origin, in agreement with previous suggestions from 1 au observations. Discrepancies between locations of the flux peaks and other features suggest that these peaks may too be shifted by source region interchange reconnection. Our interpretation of each event is compatible with a global pattern of open flux transport, although random footpoint motions or other explanations remain feasible. These exploratory results highlight future opportunities for statistical studies regarding interchange reconnection and flux transport at CH boundaries with modern near-Sun missions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.