Abstract

Topological insulators are a concept that originally stems from condensed matter physics. As a corollary to their hallmark protected edge transport, the conventional understanding of such systems holds that they are intrinsically closed, that is, that they are assumed to be entirely isolated from the surrounding world. Here, by demonstrating a parity–time-symmetric topological insulator, we show that topological transport exists beyond these constraints. Implemented on a photonic platform, our non-Hermitian topological system harnesses the complex interplay between a discrete coupling protocol and judiciously placed losses and, as such, inherently constitutes an open system. Nevertheless, even though energy conservation is violated, our system exhibits an entirely real eigenvalue spectrum as well as chiral edge transport. Along these lines, this work enables the study of the dynamical properties of topological matter in open systems without the instability arising from complex spectra. Thus, it may inspire the development of compact active devices that harness topological features on-demand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.