Abstract

The parity-violation difference between mirror images of chiral metal centers found in naturally occurring proteins and enzymes is computed at the Dirac-Hartree-Fock level, for both equilibrium and transition state configurations. The systems, selected on the likelihood of yielding high parity violation energies based on atomic mass and coordination geometry, are extracted from: type I Blue Copper Protein active site, Zn and Cd Carbon Anhydrase, Ni Acetyl-Coenzyme-A Synthase, and Mo based CO-Dehydrogenase. Our values provide an approximate upper limit to possible parity-violation effects in biological systems based on static effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call