Abstract

Non-Hermitian metasurfaces provide an excellent platform for the study of parity-time (PT) symmetry transition. The exceptional point (EP) in the transition process exhibits peculiar physical phenomena and enriches the development of metasurfaces. In this study, a terahertz metal-graphene hybrid metasurface that can study PT symmetry transition and EP in transmission and reflection polarization channels is designed by using the phase transition characteristics of VO2. The tunable asymmetric loss and PT symmetry transition can be actively controlled by changing the Fermi energy of the graphene strip. Interestingly, owing to the special chirality of the structure, the original metasurface, and the mirrored metasurface degenerate into a circularly polarized state with opposite rotations at the same Fermi energy. The π-phase mutation at EP is observed following the interaction of circularly polarized waves and the metasurface and is expected to have good application prospects in environmental monitoring and gas sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call