Abstract

The ability to achieve low phase noise single-mode oscillation within an optoelectronic oscillator (OEO) is of fundamental importance. In the frequency-tunable OEO, the wide microwave photonic filter (MPF) bandwidth is detrimental to select single-mode among the large number of cavity modes, thus leading to low signal quality and spectral purity. Stable single-mode oscillation can be achieved in a large time delay OEO system by harnessing the mechanism from parity-time (PT) symmetry. Here, a PT-symmetric tunable OEO based on dual-wavelength and cascaded phase-shifted fiber gratings (PS-FBGs) in a single-loop is proposed and experimentally demonstrated. Combining the merits of wide frequency tuning of PS-FBG-based MPF and single mode selection completed by the PT-symmetric architecture of the OEO, where the gain and loss modes carried by dual-wavelengths to form two mutually coupled resonators in a single-loop, signals range from 1 GHz to 22 GHz with the low phase noise distributed in -122∼ -130 dBc/Hz at 10 kHz offset frequency are obtained in the experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.