Abstract
The restoration of the parity symmetry has been performed in the framework of the Highly Truncated Diagonalization Approach suited to treat correlations in an explicitly particle-number conserving microscopic approach. To do so we have assumed axial symmetry and used a generalized Wick's theorem due to L\"owdin in a projection-after-variation scheme. We have chosen the Skyrme SkM$^*$ energy-density functional for the particle-hole channel and a density-independent delta force for the residual interaction. We have applied this approach in the region of the outer fission barrier of the $^{240}$Pu nucleus. As a result, we have shown that the $K^{\pi} = 0^+$ fission isomeric state is statically unstable against intrinsic-parity breaking modes, while the projection does not affect the energy at the top of the intrinsic outer fission barrier. Altogether, this leads to an increase of the height of the outer fission barrier--with respect to the fission isomeric state--by about 350 keV, affecting thus significantly the fission-decay lifetime of the considered fission isomer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.