Abstract

Coherence of superconducting qubits can be improved by implementing designs that protect the parity of Cooper pairs on superconducting islands. Here, we introduce a parity-protected qubit based on voltage-controlled semiconductor nanowire Josephson junctions, taking advantage of the higher harmonic content in the energy-phase relation of few-channel junctions. A symmetric interferometer formed by two such junctions, gate-tuned into balance and frustrated by a half-quantum of applied flux, yields a cos(2φ) Josephson element, reflecting coherent transport of pairs of Cooper pairs. We demonstrate that relaxation of the qubit can be suppressed tenfold by tuning into the protected regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.