Abstract
It is shown how the 300 rays associated with the antipodal pairs of vertices of a 120-cell (a four-dimensional regular polytope) can be used to give numerous "parity proofs" of the Kochen-Specker theorem ruling out the existence of noncontextual hidden variables theories. The symmetries of the 120-cell are exploited to give a simple construction of its Kochen-Specker diagram, which is exhibited in the form of a "basis table" showing all the orthogonalities between its rays. The basis table consists of 675 bases (a basis being a set of four mutually orthogonal rays), but all the bases can be written down from the few listed in this paper using some simple rules. The basis table is shown to contain a wide variety of parity proofs, ranging from 19 bases (or contexts) at the low end to 41 bases at the high end. Some explicit examples of these proofs are given, and their implications are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.