Abstract

Quantum chromodynamics is a fundamental non-Abelian gauge theory of strong interactions. The physical quantum chromodynamics vacuum state is a linear superposition of the [Formula: see text]-vacua states with different topological numbers. Because of the configuration of the gauge fields, the tunneling events can induce the local parity-odd domains. Those interactions that occur in these domains can be affected by these effects. Considering the hadron (nucleon) system, we introduce the parity-odd parton distribution functions in order to describe the parity-odd structures inside the hadron in this paper. We obtain 8 parity-odd parton distribution functions at leading twist for spin-1/2 hadrons and present their properties. By introducing the parity-odd quark–quark correlator, we find the parity-odd effects vanish from the macroscopic point of view. In this paper, we consider the high energy semi-inclusive deeply inelastic scattering process to investigate parity-odd effects by calculating the spin asymmetries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call