Abstract

A parity walk in an edge-coloring of a graph is a walk along which each color is used an even number of times. A parity edge-coloring (respectively, strong parity edge-coloring) is an edge-coloring in which there is no nontrivial parity path (respectively, open parity walk). The parity edge-chromatic number p(G) (respectively, strong parity edge-chromatic number $\widehat{p}(G)$ ) is the least number of colors in a parity edge-coloring (respectively, strong parity edge-coloring) of G. Notice that $\widehat{p}(G) \ge p(G) \ge \chi'(G) \ge \Delta(G)$ for any graph G. In this paper, we determine $\widehat{p}(G)$ and p(G) for some complete bipartite graphs and some products of graphs. For instance, we determine $\widehat{p}(K_{m,n})$ and p(K m,n ) for m?n with n?0,?1,?2 (mod 2?lg?m?).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.