Abstract

Computational theories of motor control propose that the brain uses ‘forward’ models of the body to ensure accurate control of movements. Forward ‘dynamic’ models are thought to generate an estimate of the next motor state for an upcoming movement: thereby providing a dynamic representation of the current postural configuration of the body that can be utilised during movement planning and execution. We used event-related functional magnetic resonance imaging [fMRI] to investigate brain areas involved in maintaining and updating the postural representations of the upper limb that participate in the control of reaching movements. We demonstrate that the neural correlates for executing memory-guided reaching movements to unseen target locations that were defined by arm posture, are primarily within regions of the superior parietal lobule [SPL]: including an area of the medial SPL identified as the human homologue of the ‘parietal reach region’ [PRR]. Using effective connectivity analyses we show that signals that influence the BOLD response within this area originate within premotor areas of the frontal lobe, including premotor cortex and the supplementary motor area. These data are consistent with the view that the SPL maintains an up-to-date estimate of the current postural configuration of the arm that is used during the planning and execution of reaching movements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.