Abstract

This study aimed to investigate the possible protective effect of paricalcitol on experimental amikacin-induced nephrotoxicity model in rats. Wistar albino rats (n = 32) were allocated into four equal groups of eight each, the control (Group C), paricalcitol (Group P), amikacin-induced nephrotoxicity (Group A), and paricalcitol-treated amikacin-induced nephrotoxicity (Group A + P) groups. Paricalcitol was given intra-peritoneally at a dose of 0.4 μg/kg/d for 5 consecutive days prior to induction of amikacin-induced nephrotoxicity. Intra-peritoneal amikacin (1.2 g/kg) was used to induce nephrotoxicity at day 4. Renal function parameters, oxidative stress biomarkers, oxidative DNA damage (8-hydroxy-2′-deoxyguanosine/deoxyguanosine ratio), kidney histology, and vascular endothelial growth factor (VEGF) immunoexpression were determined. Group A + P had lower mean fractional sodium excretion (p < 0.001) as well as higher creatinine clearance (p = 0.026) than the amikacin group (Group A). Renal tissue malondialdehyde levels (p = 0.035) and serum 8-hydroxy-2′-deoxyguanosine/deoxyguanosine ratio (8-OHdG/dG ratio) (p < 0.001) were significantly lower; superoxide dismutase (p = 0.024) and glutathione peroxidase (p = 0.007) activities of renal tissue were significantly higher in group A + P than in group A. The mean scores of tubular necrosis (p = 0.024), proteinaceous casts (p = 0.038), medullary congestion (p = 0.035), and VEGF immunoexpression (p = 0.018) were also lower in group A + P when compared with group A. This study demonstrates the protective effect of paricalcitol in the prevention of amikacin-induced nephrotoxicity in an experimental model. Furthermore, it is the first study to demonstrate that paricalcitol improves oxidative DNA damage in an experimental acute kidney injury model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call