Abstract
This study aims to determine the prophylactic and therapeutic efficacy of inhibition of Wnt/β-catenin signaling pathway with paricalcitol in an experimental scleroderma model created with bleomycin (BLM). Sixty female BALB/c mice (8-week old and weighing 25 g to 30 g) were divided into six groups as prophylactic-early [group 1 (control I)], sham I (group 2), paricalcitol I (group 3), therapeutic-late [group 4 (control II)], sham II (group 5), and paricalcitol II (group 6) groups. Subcutaneous BLM (100 μg/day) injections were used to induce dermal fibrosis and paricalcitol (0.3 μg/kg/day) was applied subcutaneously to BLM-injected mice during the first three weeks for preventive interventions and in the second three weeks for therapeutic interventions. Tissue samples were harvested for subsequent pathological and real-time polymerase chain reaction analysis. Tissue transforming growth factor-beta 1, axin-1, and Wnt-2 messenger ribonucleic acid expressions were determined by real-time polymerase chain reaction. Repeated BLM applications increased the dermal inflammatory cell infiltration and dermal thickness, and led to dermal fibrosis, in both early and late stages. Similarly, transforming growth factor-beta 1, axin-1, and Wnt-2 expressions were significantly increased in the sham groups compared to the own control group (p<0.05 for all). Contrarily, prophylactic and therapeutic paricalcitol applications decreased the transforming growth factor-beta 1, axin-1, and Wnt-2 messenger ribonucleic acid expressions compared to the own sham group (p<0.05 for all). In addition, the regressions in dermal necro-inflammation and dermal fibrosis on pathological views were also observed in the paricalcitol applied groups. In this model, increased axin-1 and Wnt-2 messenger ribonucleic acid expressions suggest that Wnt/β-catenin pathway is active in dermal fibrosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.