Abstract
As distributed computing infrastructures become nowadays ever more complex and heterogeneous, scientists are confronted with multiple competing goals such as makespan in high-performance computing and economic cost in Clouds. Existing approaches typically aim at finding a single tradeoff solution by aggregating or constraining the objectives in an a-priory fashion, which negatively impacts the quality of the solutions. In contrast, Pareto-based approaches aiming to approximate the complete set of (nearly-) optimal tradeoff solutions have been scarcely studied. In this paper, we extend the popular Heterogeneous Earliest Finish Time (HEFT) workflow scheduling heuristic for dealing with multiple conflicting objectives and approximating the Pareto frontier optimal schedules. We evaluate our new algorithm for performance and cost tradeoff optimisation of synthetic and real-world applications in Distributed Computing Infrastructures (DCIs) and federated Clouds and compare it with a state-of-the-art meta-heuristic from the multi-objective optimisation community.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.