Abstract

Consider a many-to-many matching market that involves two finite disjoint sets, a set A of applicants and a set C of courses. Each applicant has preferences on the different sets of courses she can attend, while each course has a quota of applicants that it can admit. In this paper, we examine Pareto optimal matchings (briefly POM) in the context of such markets, that can also incorporate additional constraints, e.g., each course bearing some cost and each applicant having a limited budget available. We provide necessary and sufficient conditions for a many-to-many matching to be Pareto optimal and show that checking whether a given matching is Pareto optimal can be accomplished in O(∣A∣2⋅∣C∣2) time. Moreover, we provide a generalized version of serial dictatorship, which can be used to obtain any many-to-many POM. We also study some structural questions related to POM. We show that, unlike in the one-to-one case, finding a maximum cardinality POM is NP-hard for many-to-many markets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.