Abstract
In this paper, we study Pareto optimality for multiuser relay networks. We adopt single-stream transmission and amplify-and-forward relays. First, with fixed relay processing matrices and transmit and receive beamforming vectors, we study Pareto optimality with respect to the power of the transmitters. Based on the signal-to-noise-plus-interference ratio (SINR) balancing analysis, we give a necessary and sufficient condition for a set of SINRs to be Pareto optimal. Second, we consider Pareto optimality with respect to the relay processing matrices, where the power of the transmitters and the transmit and receive beamforming vectors is fixed. Taking advantage of multi-objective optimization analysis, we present a necessary and sufficient condition for a set of SINRs to be Pareto optimal. We also give a necessary condition to check whether Pareto optimality is fulfilled. Finally, with fixed relay processing matrices, we study Pareto optimality with respect to the transmit and receive beamforming vectors. Simulations show that our proposed algorithms outperform the compared schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.