Abstract

ased on concept of Pareto-optimal solution and game theory associated with Nash non-cooperative and cooperative solution, a mathematical procedure is presented for optimum design of axially loaded pile structure. The decision making situation is formulated as a constrained optimization problem with two objectives of contradictory in nature. The factor of safety is taken as the design variable. Geometric constraints are considered by imposing a lower and upper bound on the design variable. Two objectives considered are: maximization of ultimate load carrying capacity of pile and minimization of associated cost. The generation of Pareto-optimal solution and methodology based on game theory concept is described. The design problem is mathematically formulated as two-person game. To obtain the starting point of game, Nash non-cooperative solution or Nash equilibrium solution is evaluated for an irrational play. For cooperative game, a negotiation model is developed for overall benefit of all players. Game is terminated when the optimal trade-off between two objectives is reached with maximization of supercriterion. Two numerical examples of practical interest are solved to demonstrate the methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.