Abstract
Abstract This paper presents the formulation and results for a control-aware optimization of the combined geometric and structural design of an energy-harvesting underwater kite. Because kite-based energy-harvesting systems, both airborne and underwater, possess strong coupling between closed-loop flight control, geometric design, and structural design, consideration of all three facets of the design within a single codesign framework is highly desirable. However, while prior literature has addressed one or two attributes of the design at a time, this work constitutes the first comprehensive effort aimed at addressing all three. In particular, focusing on the goals of power maximization and mass minimization, we present a codesign formulation that fuses a geometric optimization tool, structural optimization tool, and closed-loop flight efficiency map. The resulting integrated codesign tool is used to address two mathematical optimization formulations that exhibit subtle differences: a Pareto optimal formulation and a dual-objective formulation that focuses on a weighted power-to-mass ratio as the techno-economic metric of merit. Based on the resulting geometric and structural designs, using a mediumfidelity closed-loop simulation tool, the proposed formulation is shown to achieve more than three times the powerto-mass ratio of a previously published, unoptimized benchmark design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.