Abstract
Protein structure prediction (PSP) is predicting the three-dimensional of protein from its amino acid sequence only based on the information hidden in the protein sequence. One of the efficient tools to describe this information is protein energy functions. Despite the advancements in biology and computer science, PSP is still a challenging problem due to its large protein conformation space and inaccurate energy functions. In this study, PSP is treated as a many-objective optimization problem and four conflicting energy functions are used as different objectives to be optimized. A novel Pareto-dominance-archive and Coordinated-selection-strategy-based Many-objective-optimizer (PCM) is proposed to perform the conformation search. In it, convergence and diversity-based selection metrics are used to enable PCM to find near-native proteins with well-distributed energy values, while a Pareto-dominance-based archive is proposed to save more potential conformations that can guide the search to more promising conformation areas. The experimental results on thirty-four benchmark proteins demonstrate the significant superiority of PCM in comparison with other single, multiple, and many-objective evolutionary algorithms. Additionally, the inherent characteristics of iterative search of PCM can also give more insights into the dynamic progress of protein folding besides the final predicted static tertiary structure. All these confirm that PCM is a fast, easy-to-use, and fruitful solution generation method for PSP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.