Abstract
In this paper, the job shop scheduling problem is studied with the objectives of minimizing the makespan and the mean flow time of jobs. The simultaneous consideration of these objectives is the multi-objective optimization problem under study. A metaheuristic procedure based on the simulated annealing algorithm called Pareto archived simulated annealing (PASA) is proposed to discover non-dominated solution sets for the job shop scheduling problems. The seed solution is generated randomly. A new perturbation mechanism called segment-random insertion (SRI) scheme is used to generate a set of neighbourhood solutions to the current solution. The PASA searches for the non-dominated set of solutions based on the Pareto dominance or through the implementation of a simple probability function. The performance of the proposed algorithm is evaluated by solving benchmark job shop scheduling problem instances provided by the OR-library. The results obtained are evaluated in terms of the number of non-dominated schedules generated by the algorithm and the proximity of the obtained non-dominated front to the Pareto front.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.