Abstract
Embryonic development of an unfertilized egg, parthenogenesis, is known to occur in Chinese Painted quail. However, selection for parthenogenesis in both the dam and sire leads to a reduction in hatchability following mating. Therefore, the objective of this study was to determine if selection for parthenogenesis in the dam, sire, or both also impact their progeny performance. There were 2 lines of birds used in this trial: 1 line selected for parthenogenesis and 1 line not selected for parthenogenesis (control) yielding breeding pairs as follows: control dams + control sires (CC), control dams + parthenogenetic sires (CP), parthenogenetic dams + control sires (PC), and parthenogenetic dams + parthenogenetic sires (PP). For all progeny, a dam line main effect revealed that the parthenogenetic line dams had heavier offspring hatch weight and 4 wk body weight as well as higher 1st wk chick mortality versus control line dams. However, control line dams had the highest 4th wk chick mortality versus parthenogenetic line dams. In female virgin progeny, a dam by sire interaction revealed that PP, PC, and CP had the heaviest 1st egg in the clutch position versus CC. Also, eggs from PP had the highest number of eggs and the most female progeny exhibiting parthenogenesis versus CC. There was a linear increase in egg weight as clutch position increased for progeny from PP and CC yet a linear decline for CP. In conclusion, it appears that both the dam and sire selected for parthenogenesis impact progeny performance as parthenogenetic dams and sires additively contribute to the degree of parthenogenesis exhibited by virgin female progeny. Moreover, because parthenogenesis is known to exist in the modern poultry industry, even the accidental selection of the parthenogenetic trait in either males or females could have a negative impact on overall chick production and performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.