Abstract
Different mortality of males and females during early post-hatching development in sexually size-dimorphic bird species is usually attributed to different nutritional requirements of the sexes, because mortality is mostly biassed toward the larger sex. We investigated whether sex-specific embryo mortality in the yellow-legged gull (Larus michahellis), a size-dimorphic seabird, depends on parental condition. To test this, we experimentally modified parental nutritional conditions by supplementary feeding of yellow-legged gulls during egg formation, to evaluate sex-biassed environmental sensitivity of gull embryos. We found that eggs were larger in supplemented clutches, but egg size did not affect embryo survival. Survival of male gull embryos was more related to parental food conditions than was survival of female embryos. Survival of male embryos in supplemented clutches was greater than in unsupplemented clutches whereas survival of female embryos was similar in both groups. Because size at hatching was similar in both sexes our results suggest that male phenotype disadvantage is not exclusively linked to the energy demands of size-dimorphic development at the embryo stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.