Abstract

Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues.

Highlights

  • Since the turn of the 20th century, the planet has undergone a marked increase in nighttime illumination

  • We assessed dim light at night (dLAN) mediated changes in adaptive immunity in adult offspring and demonstrate that parental exposure to dLAN prior to mating is sufficient to decrease adult offspring cell-mediated immunity and enhance humoral immune function in a parent- and offspring-sex specific manner. These changes are accompanied by altered splenic endocrine receptor expression in offspring sired by studs exposed to dLAN, relative to offspring of studs exposed to dark nights, suggesting altered neuroendocrine-immune communication

  • This pairing resulted in four groups described as father’s lighting conditions – mother’s lighting condition: dark nights (DARK)-DARK, DARK-dLAN, dLAN-DARK, and dLAN-dLAN

Read more

Summary

Introduction

Since the turn of the 20th century, the planet has undergone a marked increase in nighttime illumination. We assessed dLAN mediated changes in adaptive immunity in adult offspring and demonstrate that parental exposure to dLAN prior to mating is sufficient to decrease adult offspring cell-mediated immunity and enhance humoral immune function in a parent- and offspring-sex specific manner. These changes are accompanied by altered splenic endocrine receptor expression in offspring sired by studs exposed to dLAN, relative to offspring of studs exposed to dark nights, suggesting altered neuroendocrine-immune communication. These results indicate pervasive and transgenerational effects of light at night on the immune system

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.