Abstract

Male sterility in hermaphroditic species may represent the first step in the evolution toward dioecy. However, gender specialization will not proceed unless the male-sterile individuals compensate for fitness lost through the male function with an increase in fitness through the female function. In the distylous shrub Erythroxylum havanense, thrum plants are partially male-sterile. Using data collected throughout eight years, we investigated whether thrum individuals have an increased performance as female parents, thereby compensating for their loss of male fitness. We found that thrum plants outperformed pins in the probabilities of seed maturation and germination and long-term growth of the seedlings. In turn, pollen from pin plants achieved greater pollen tube growth rates. Our results suggest that the superior performance of the progeny of thrum maternal plants is a consequence of better seed provisioning via effects of the maternal environment, cytotype or nuclear genes. Overall, our results suggest that E. havanense is evolving toward a dioecious state through a gynodioecious intermediate stage. This evolutionary pathway is characterized by an unusual pattern of gender dimorphism with thrums becoming females and pins becoming males. We propose that this pattern may be better explained by the interaction between male-sterility cytoplasmic genes and the heterostyly supergene.Corresponding Editor: T. Markow

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call