Abstract

Ischemic stroke remains a significant problem that is the major cause of death and disability worldwide. Parecoxib is clinically used for short-term management of postoperative pain. Administration of parecoxib in rats has been reported to protect against the cerebral ischemia/reperfusion. However, the neuroprotective mechanism of parecoxib is still largely unknown. In this study, we found parecoxib could protect against neurotoxicity induced by 4 h oxygen-glucose deprivation (OGD) plus reoxgenation for 20 h, a widely used in vitro model of ischemia/reperfusion. In addition, we characterized the molecular mechanism of parecoxib's neuroprotection. We found parecoxib was able to activate CREB, and subsequently maintained the expression of Bcl-2, which is an important mitochondria-associated protein. Inhibition of endogenous Bcl-2 expression by transfection of Bcl-2-shRNA significantly attenuated the neuroprotective effects of parecoxib treatment. Furthermore, ATP production assay and mitochondrial membrane potential (ΔΨm) assay suggested that parecoxib exerted neuroprotective effect against OGD/R by maintaining the function of mitochondria. These data suggested that parecoxib treatment is a potential therapeutic approach for protecting against ischemia/reperfusion injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.